LVt L CUPY

ESD ACCESSION Lio.L
EST) Call No. [4)

Copy No. @ of Q_ (5’ 3
M69-65

ESD-TR-70-204

ANNOTATED MICROPROGRAMMING BIBLIOGRAPHY

Microprogramming Group

JULY 1970

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanacom Field, Bedford, Massachusetts

ESD RECCRD COPY

RETURN TO
SCIENTIFIC & TECHNICAL INFORMATION DIVISION
[ESTI), BUIILDING 1211

Project 7T00A
Prepared by
THE MITRE CORPORATION

" This document hos been approved for public
release and sale; its distribution is un- Bedford, Massachusetts
limited. Contract F19(628)-68-C-0365

ANCFOIRES”

When U.S. Government drawings, specifica-
tions, or other data are used for ony purpose
other thon o definitely related government
procurement operation, the government there-
by incurs no responsibility nor any obligation
whatsoever; ond the fact that the government
may have formulated, furnished, or in any
way supplied the said drowings, specifico-
tions, or other dota is not to be regarded by
implication or otherwise, as in any monner
licensing the holder or any other person or
corporotion, or conveying ony rights or per-
mission to manufacture, use, or sell any
patented invention that may in ony way be
related thereto.

Do not return this copy. Retain or destroy.

ESD-TR-70-204 M69-65

ANNOTATED MICROPROGRAMMING BIBLIOGRAPHY

Microprogramming Group

JULY 1970

Prepared for

DIRECTORATE OF PLANNING AND TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Project 700A
Prepared by

This dacument has been approved for public THE MITRE CORPORATION
release ond sale; its distribution is un- Bedford, Massachusetts

limited. Contract F19(628)-68-C-0365

FOREWORD

This report was prepared by The MITRE Corporation, Bedford, Massachusetts,
under Air Force Contract No. F19(628)-68-C-0365. It carries MITRE Project
No. 700A. There is no Air Force System, Project or Task Number assigned.
The report is a bibliography which provides an indexed, annotated list of
publications related to the field of microprogramming. It covers the period
from 1951, when the term was introduced, until the present time.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

et 5@7

Robert P. Savoy

Electronics Engineer

Development Engineering Division
Directorate of Planning & Technology

ii

ABSTRACT

This bibliography provides an indexed, annotated list of
publications related to the field of microprogramming, from the
introduction of the term in 1951 to the present time.

iii

ACKNOWLEDGEMENT

Documents for this bibliography were collected by Thomas Berschback
and Nancy Anschuetz. A number of entries were obtained from the biblio-
graphy published by John Douglas, General Electric, Phoenix, in the
SICMICRO Newsletter, Vol. 1, No. 2.

After initial review by Thomas Berschback, revisions were made by
Robert W. Cornelli, Robert G. Curtis, Barbara J. Huberman and Codie S.
Wells.

The KWIC index program used was prepared by William Amory.

Editorial control was exercised by Thomas Berschback throughout
most of the preparation process.

iv

SECTION I

SECTION II

SECTION III

TABLE OF CONTENTS

INTRODUCTION

BIBLIOGRAPHY

INDEX

51

SECTION I

INTRODUCTION

This bibliography provides an indexed, annotated list of pub-
lications related to the field of microprogramming, from the intro-
duction of the term in 1951 to the present time.

This bibliography has been winnowed to exclude publications
related only to the technological aspects of the memories, whether
read-only or read-write, used to implement microprograms.

Section II 1s the annotated bibliography. Entries are organized
alphabetically, by first author. Otherwise unidentified quoted sec-
tions are taken from the paper.

Section III contains a computer generated index, which provides
access to bibliography entries by:

1. Key words in titles.
2. Authors' names.
3. Date of publication.

SECTION II

BIBLIOGRAPHY

(1)
ALLEN-BABCOCK COMPUTING, INC., "Information outline: Remote-access
time-sharing system'.

This sales brochure for ABC briefly describes their time-
sharing system. Their 360/50 "...has been modified by the attachment
of a second Read-only-store (ROS) which contains additional operation
codes...performs operations such as list searching, evaluation of
PL/1 expressions, floating decimal arithmetic, and various utility
functions, all of which result in the fastest interpretive system in
existence."

(2)

ALLEN, M. W.; PEARCEY, T.; PENNY, J. P.; ROSE, G. A. and SANDERSON,
J. G., "CIRRUS, An economical multiprogram computer with microprogram
control", IEEE Transactions on Electronic Computers, Vol. EC-12;
December 1963, pp. 663-671.

Machine: CIRRUS

CIRRUS, constructed in 1963 at the University of Adelaide,
Australia, is a general-purpose computer built for test purposes and
is not being produced. Some mention is made of microprogramming, but
only as a mechanism which allows certain operations to be handled
with more efficiency.

(3)
AMDAHL, L. D., "Microprogramming and stored logic', Datamation, Vol.
10, No. 2; February 1964, pp. 24-26.

Machines: Thompson Ramo Wooldridge 133 (now the Bunker-Ramo 133),
Packard-Bell 440, Collins 8401

"Microprogrammed computers basically differ from conven-
tional computers in that the equivalent of a single instruction in
a conventional computer is often a subroutine (interpreted instruction)
in a microprogrammed computer.' In such computers a program can be
considered a calling sequence. The calling sequences of the machines
listed above are described to show how the control sequences are
simplified and more flexibility is allowed through the use of micro-
programming. The cost of additional execution time is compared with
the flexibility provided by microprogramming and the time saved in
executing some complex instructions.

(4)
BAILEY, S. J., "Faster computer control with a read-only memory",
Control Engineering, Vol. 14, No. 8; August 1967, pp. 65-68.

Machine: Interdata 3

This article presents several applications of Interdata 3
computers with special microprograms implemented to achieve signifi-
cantly improved efficiency. The author claims that the use of read-
only memories makes the use of small computers (like the Interdata 3)
practical for application to process control problems.

€59

BASHKOW, T. R.; SASSON, A. and KRONFELD, A., "System design of a
FORTRAN machine", IEEE Transactions on Electronic Computers, Vol.
EC-16, No. 4; August 1967, pp. 485-499.

"The authors suggest an approach to the use of algebraic
languages, by means of hardware interpreter. A design is presented
for the construction of a machine for the execution of a subset of
FORTRAN consisting of arithmetic assignment, GO TO, computed GO TO,
arithmetic IF, PAUSE, DO, CONTINUE, unformatted READ and WRITE, END
and DIMENSION statements. Although such a machine has not been
constructed, the authors make it clear that such construction is
feasible. State diagrams are given for some of the most important
circuits, and the hardware implementation is given for one of these
circuits."”

Computing Reviews; January 1968,
#13,542, p. 63.

(6)

BAZERQUE, G.; FERRIE, J. and HUGOT, P., "Micromachine universal
structure study oriented to computers simulation', Preprints of
papers presented at IFIP Congress 68, Edinburgh; Booklet D:
Hardware I, pp. D103-D107.

Machine: IBM 360/30

This article, originally in French and only roughly trans-
lated, addresses the design of a general-purpose or universal system
to simulate any microprogrammed computer. As an example, a simulation
of an IBM 360/30 is presented - a convenient choice because both the
micromachine and the 360/30 contain 32 bit words. The authors note
that the quality of the simulation is greatly enhanced by such matching
where possible. The simulation of the 360/30 includes representations
of general registers, instruction location counter and core memory,
but not the I/0 operations.

(7)

BEELITZ, H. R.; LEVY, S. Y.; LINHARDT, R. J. and MILLER, H. S.,
"System architecture for large-scale integration", AFIPS Conference
Proceedings; FJCC 1967, pp. 185-200.

Machine: LIMAC

This article describes an approach for simplifying the
control structure of a machine which utilizes the benefits of large-
scale integration (LSI). '"This evolutionary development has gone
from conventional machine design first to a one-dimensional func-
tional control partitioning (the register machine) and then to a
two-dimensional elementary operation formatted control partitioning
(the LIMAC machine)."

The two "dimensions'" are: information transfer and data
processing execution. Use of this structure "...leads naturally to
the elementary operation (EO) format of control (also known as
microprogramming).’" In LIMAC (Large Integrated Monolithic Array
Computer), a machine instruction is executed by performing a sequence
of microinstructions. First, the operands are transferred into a
function module, then another transfer operation passes the control
word into a register to specify the execution.

(8)
BECK, L. and KEELER, F., "The C-8401 data processor', Datamation,
Vol. 5, No. 2; February 1964, pp. 33-35.

Machine: The Collins Radio C-8401

The C-8401 is "...a stored program, intermediate scale
digital computer...a microprogrammed data processor...communications
oriented." The 1024 word, 36 bit micro-memory, though non-destructive,
", ..mav be conveniently loaded under operator or program control."

(9)
BENJAMIN, R. I., '"The Spectra 70/45 emulator for the RCA 301",
Communications of the ACM, Vol. 8, No. 12; December 1965, pp. 748-752.

Machine: RCA Spectra 70/45

The author, with startling brevity, discusses the concept
of emulation, describes the RCA 301, the RCA Spectra 70/45 and its
micromachine and the emulation process as applied to emulating the
RCA 301.

"A micro-program simulation (i.e. emulation) is invariably
more efficient than a macro-program simulation, since the simulation
is being performed at the point of least difference between the
computers."

(10)
BILLING, H. and HOPMANN, W., "Mikroprogramm-Steuerwerk', Elektronische
Rundschau Nr. 10; 1955, pp. 349-359.

This paper, tutorial in nature, describes microprogramming
as Wilkes defines it, and discusses read-only memory technology. In
the original German.

(11)
BLANKENBAKER, J. V., '"Logically micro-programmed computers", IRE
Transactions on Electronic Computers, Vol. EC-9; June 1960, pp. 103-109.

"Simple computers exploiting the concepts of simulation
and microprogramming are described. Logical rather than arithmetic
microprogramming operations are employed for generality and greater
simplicity. Design techniques are given for computers employing
only multiple-bit time delays (i.e. no flip-flops or toggles are
used)."

SICMICRO Newsletter, Vol. 1,
No. 2; August 1969, p. 10.

(12)
BORSCHEV, V. B.; VASILEVSKIY, P. L. and KHOMYAKOV, M. V., "A

programming micro-language for Ural-4", Kibernetika, No. 6;
1966, pp. 47-49 (Russian).

Machine: Ural-é4

"The usefulness of developing a programming language for
Ural-4 is justified. The following conditions are formulated which
must be satisfied by the programming micro-language for Ural-4 and
its translator: a substantial reduction of the programmer's work
(compared to manual programming); the quality of programs constructed
by the trardslator is not poorer than that of programs written by
hand; the training of programmers with a good knowledge of Ural-é4
should not exceed several days; the language admits of readjustment,
extension, and inclusion in the automatic programming system; trans-
lation from other programming languages to the proposed one is
simpler than translation to machine language; the work of programming
the translator for this language should be minimal. The following
basic properties of the microprogramming language for Ural-4 are
pointed out: the instruction system coincides with that of Ural-4;
the instructions consist of the operation code and certain names --
alphanumeric words -- used for locating the numbers taking part in
the operation; symbolic addressing is used; the program can be
divided into rows (connected sequences of instructions, joined by
a single condition for execution):; block programming is applied.
An exact description of the language, its syntax, and the translation
rules are not given."

G. V. in Cybernetics Abstracts,
No. 9; 1967,

(13)
BOUTWELL, E. 0., Jr., "The PB 440 computer", Datamation, Vol. 5,
No. 2; February 1964, pp. 30-32.

Machine: PB 440

The PB 440 is described as a microprogrammed computer
with two applications: (1) as a control and arithmetic element
in real-time systems, and (2) as a high performance calculator
for general scientific purposes. The author states that a micro-
program is much faster than a conventional subroutine.

Access to the read-only memory in the PB 440 is one
microsecond, while the cycle time of the main memory is five
microseconds.

(14)

BOUTWELL, E. 0., Jr. and HOSKINSON, E. A., "The logical organization
of the PB 440 microprogrammable computer', AFIPS Conference Pro-
ceedings; FJCC 1963, pp. 201-213,

Machine: PB 440

One of the original motivations for designing computers
with a microprogramming control feature was to enable the programmer
to direct the computer at a lower level of control than was possible
with conventional, wired-logic computers. The logical structure of
the PB 440, which fulfills this lower-level control requirement, is
the topic of this paper.

The paper describes the general characteristics of the
computer and also the different types of micro-instructions avail-
able. Included in the micro-machine is an automatic instruction
counter, the P register.

An early time-saving characteristic, that of being able to
initiate a read operation before finishing a restore operation in
the main memory, is also introduced with the PB 440.

(15)
BREUER, M. A., "Adaptive computers", Information and Control, Vol. 11,
No. 4; October 1967, pp. 402-422,

This paper discusses several possibilities for graceful
degradation in adaptive computers. Graceful degradation occurs
when a computer can continue to function, at some loss of accuracy
or speed when a portion of the hardware is malfunctioning.

The author suggests the use of microprogramming: an
alternate microprogram, not affected by a particular set of com—
ponent failures can perform the failing function - at the cost of
memory space.

(16)
BRILEY, B. E., "Picoprogramming: A new approach to internal computer
control', AFIPS Conference Proceedings; FJCC 1965, Part I, pp. 93-98.

Picoprogramming recognizes a ''correspondence between the
pulse-programming requirements of a control section and the capa-
bilities of a memory element known as MYRA. A MYRA memory is a
MYRiAperture ferrite disk which, when accessed, produces sequential
trains of logic-level pulses upon 64 or more otherwise isolated
wires."

The main advantage of picoprogramming is that no clock is

needed because each MYRA disk, as it completes its switching, causes
the next instruction to be obeyed.

10

(17)

BUCKINGHAM, B. R. S.; CARTER, W. C.; CRAWFORD, W. R. and NOWELL,
G. A., "The controls automation system', Sixth Annual Symposium
on Switehing Circuit Theory and Logical Design; October 1965,
pp. 279-288.

Machines: IBM 360 Systems, Models 40, 50, 65 and 67.

"This paper discusses the specificationsg, programming
implementation, and use of a design automation system that can be
used in the development of any computer having read-only storage
(ROS) controls.

This system, called the Controls Automation System (CAS),
designed concurrently with the IBM System/360 was used in the
development of Models 40, 50, 65 and 67. The current version of
CAS is used by IBM to aid in the design of all systems with ROS
controls,

The newly developed elements of this system are: 1) a
programming language for describing the data flow of a machine;
2) a program for translating a variety of microprogramming languages
into a common one, and 3) a set of computer programs enabling the
machines operation to be simulated on an IBM 7090/1401 computer."

(From the paper)

11

(18)
CALHOUN, R. C., ''Diagnostics at the microprogramming level", Modern
Data, Vol. 2, No. 5; May 1969, pp. 58-60.

Machine: RCA Spectra 70/35

Diagnostic procedures for the RCA Spectra 70/35 are
implemented with a special diagnose instruction, which allows the
execution of individual microinstructions ("elementary operations"
or "functions'") directly from main memory.

Two approaches to diagnostic procedures are discussed,
both based on the use of the diagnose.

The first method involves testing at the instruction level
until a problem occurs, then switching control over to the diagnose
instruction. Major drawbacks to this approach are that: 1) some-
times the incorrect instruction cannot be isolated, and 2) the
number of registers and the size of the instruction repertoire
makes the number of possibilities to be tested prohibitively large.

The second method is a building block approach, in which
testing is accomplished completely at the function level. For
example, the transfer bus is tested after assuming the reliability
of two registers. Then, if the transfer of information from one
register to the other fails, the transfer bus should be at fault.
The routine will continue if the transfer information is valid.
The aim of the diagnostic routine is to isolate and test as few
unknowns as possible at one time to better pinpoint a malfunction.

(19)
CAMPBELL, C. R. and NEILSON, D. A., '"Micro-programming the Spectra
70/35", Datamation, Vol. 12, No. 9; September 1966, pp. 64-67.

Machine: RCA Spectra 70/35

A concise paper on the advantages of microprogramming in
the Spectra 70/35. The 70/35 elementary operations, which include
register-to-register and variable operations, are discussed with
an example given of the microprogram for the SS format MOVE
instruction. This paper emphasizes the practicality of the read-
only memory design method for both user and manufacturer.

12

(20)

CHU, Y., "A higher-order language for describing microprogrammed
computers', University of Maryland Computer Science Center, Technical
Report 68-78; September 1968.

Mr. Chu defines a microprogram as a series of binary numbers
linked together. He has developed an ALGOL-type symbolic language to
describe microprograms. This paper introduces the language by
describing as an example a serial complement sequence using both
normal computer techniques and microprogrammed control.

The difference between sequential logic control and micro-
programmed control is (in this particular system) a trade-off between
time and flexibility. Normal control in the example requires four
elementary operations, microprogramming requires six. However, the
latter allows flexibility because each bit in the instruction word
can cause one micro-operation to be executed. Because of this
opportunity for paralled operations, only three instruction words
are actually needed.

Two drawbacks appear in this specific microprogram. Con-
siderable time can be lost in addressing the control memory; and the
multiplicity of micro-operations would require very long control
words. Trade-offs are possible, but at the cost of the full flexi-
bility of the bit-per-operation concept.

A simulator has been constructed to test this higher-order
language and a print-out is provided.

(21)
CONROY, E. D., "Microprogramming", Preprints of papers presented at
16th National Meeting of the ACM; Los Angeles, September 5-8, 1961.

Machine: 1IBM 7950 System

E. D. Conroy defines microprogramming as the 'direct control
by the programmer of more than one echelon in the hardware hierarchy."
Microprogramming allows the programmer direct control over the ele-

mentary operations.

Only the abstract and summary of the paper is presented.

13

(22)

CONROY, E. D. and MEADE, R. M., "A microinstruction system", Preprints
of papers presented at the 16th National Meeting of the ACM; Los
Angeles, September 5-8, 1961.

This paper describes a computer organization in which only
the more complex operations (for example, variable length add) exist
as instructions. Each such (primary) instruction is followed by some
microinstruction words (up to 256) which specify microinstructions
(for example, load accumulator with zero) and the conditions which
must exist in order for these instructions to be executed. If such
a condition arises, the execution of the primary instruction is
interrupted to permit execution of the microinstruction depending
on the conditionms.

In this brief summary, discussion of the technique is
omitted.

(23)

CONTI, C. J.; GIBSON, D. H. and PITKOWSKY, S. H., '"Structural aspects
of the System/360, Model 85", IBM Systems Journal, Vol. 7, No. 1;
1968, pp. 2-21.

Machine: 1IBM 360/85

This paper has as its purpose the introduction of the IBM
360/85, both in design and performance, and assumes knowledge of the
IBM 360 system.

The first section deals with the design of the computer,
and introduces a high-speed buffer called a cache. The cache pro-
vides for more storage space in the main memory by holding those
portions of main storage that are currently in use.

14

(24)
DECISION SYSTEMS, INC., "Interim status report No. 1", TR 517-1;
August 11, 1968,

The ideal computer, according to this article, is one that
must be able, via microprogramming, to encompass a variety of
instruction sets and provide an easy means of switching these sets.
Such a system could have the capability of general emulation.

To attain this goal, this interim report studies the
standardization of microprogramming techniques and attempts to
incorporate these benefits: 1) ease of microprogram preparation
and the ability to load a control memory with different micro-
instructions in the field, 2) designing compilers and check-out
systems for the microprogram, 3) create better debugging devices
for microprograms, and 4) create an "ideal" logic simulator which
analyzes instruction sets before they are committed to hardware.

The theoretical microprocessor would have three major
units, each able to function independently. They are an internal
processor, a main memory controller, and an I/0 controller. Each
of these units would be controlled by the read-only control memory.
A description of the read-only memory and the planned microinstruction
format is also given.

(25)
DREYER, L., "Principles of a two-level memory computer", Computers
and Automation, Vol. 17, No. 5; May 1968, pp. 40-42.

Machine: Elbit 100

This paper describes the Elbit 100 computer. It argues
the merits of a two~level memory computer, one level of which is
the normal storage unit, while the other is a read-only memory. A
speed increase due to the read-only memory occurs not from faster
computing circuits, but from operational instructions built into
the hardware for more efficient sequences of orders.

A good schematic diagram of a read-only memory control is
included in the article. One memory is a standard random—access core
store with a two microsecond cycle time while the other is a micro-
programmable read-only store with 400 nanoseconds access time. The
Elbit 100 has perhaps the simplest micro-machine of any existing
computer,

15

(26)

EMELYANOV-YAROSLAVSKY, L. B. and TIMOFEEV, A. A., "Microprogram
control for digital computers', Proceedings IFIP Congress 62;
pp. 567-569.

This brief but excellent article provides a description of
micro-instructions (the author terms these micro-orders), the infor-
mation that each micro-instruction must contain, and some of the
arplications of wmicroprogram control.

The three types of information required are: (1) operational,
which controls the execution of a statement; (2) address information,
which in some manner contains the address of the next micro-instruction;
and (3) time information, which determines the processing time of the
micro-instruction.

Under the heading of applications, the author's main point
is that micreprograr control can execute complex operations more
efficiently by enabling the programmer to take into account the
special properties of the algcrithm, as well as using simpler cir-
cuits to generate the control circuit.

tinally, the author hypothesizes that two or more micro-
program control computers can work together efficiently.

16

27

FLYNN, M. J. and MACLAREN, M. D., "Microprogramming revisited",
ACM Conference Proceedings; 1967, pp. 457-464. (Essentially
identical to the Argonne National Laboratory internal document
Technical Memorandum No. 134, dated 1 June 1967, same title
and authors.)

As in many of the better technical papers, the authors
early and concisely state their aims:

It is the objective of this paper to briefly
trace the history of the idea (microprogramming)
and the difficulties involved with defining or
implementing it. In doing this, we first con-
sider the general control problem and instruction
formats. Next, storage implementations of the
control function are considered and a restricted
definition of microprogramming is proposed.

This is then evaluated from a technological,
architectural and programming point of view.

We hope to show that our (demanding) definition
of microprogramming is now technologically
feasible and attractive from systems consid-
eration.

In addressing these objectives the authors have produced a worthwhile
paper.

The development supporting the definition of microprogramming
is clear and to the point. Consideration of technological, architec-
tural, and programming implications of this early development is less
successful, but still worthy of attention. On occasion the authors
resort to designing when they should be stating requirements or
categorizing potential properties, but their design sketches hit a
nice level of complexity for their presentation purposes. Fired
with enthusiasm, Messrs. Flynn and Maclaren are guilty of identifying
and discussing onlv some of the problems and potentials of micro-
programming (according to their definition, which assumes a read/
write control store).

The problems of microprogramming on the level comtemplated
by the authors are those of programming. No observation is made that
the control store becomes yet another level to be (dynamically)
managed within the hierarchy; rather, specific ad hoc management
techniques are presented. Similarly, deadlock potential in a multi-
programmable microprogram is ignored, and protection problems are
considered by design sketch rather than by requirement specification.

17

In perspective, however, the paper is of interest because of
its scructured, considered approach to some real problems, including
some credible comments on the software aspects of microprogramming --
a subject too often completely ignored in the literature.

The references are adequate and supportative, and the general

form of presentation satisfactory (in spite of several tvpographical
errors).

(28)

GERACE, G. B., '"Microprogrammed control for computing systems',
TZZE Transactions on Elcetromics Corputers, Vol. E(C-1£; December
1963, pp. 733-747.

Starting with Wilkes' logical design of a control unit,
this paper develops some variations and extensions. Specifically,
it deals with problems concerning the conditions intervening at
the end of a micro-order to determine the next one, with timing
of micro-operations and also time-sharing and multiprogramming.

(29)
GLANTZ, H. T., "A note on microprogramming', Journal of the ACM,
Vel. 38, No. 2; April 1956, pp. 77-84.

This article, written in August 1955, is an attempt to
provide a rough outline of some conditions under which microprogramming
might be a useful technique. Two methods of constructing a micro-
programmed machine, a plugboard control and an internal relay setting
control, are discussed in Section IV of the paper.

Efficiency is touted as the basis for a decision in favor
of using micro-operaticns. The problems encountered in microprogramming
are discussed in general from both an engineer's and a programmer's
viewpoint.

18

(30)

GRASSELLI, A., "The design of programmodifiable micro-programmed
control units", IRE Transactions on Electronic Computers, Vol. EC-11;
June 1962, pp. 334-339,

In this paper a design is given for a programmodifiable
control unit which does not require the usual high speed control
store. A wired-in control memory contains microinstructions stored
without repetitions. These are executed by means of words stored
in core memory, each word containing the addresses of several micro-
instructions plus looping information. The logic necessary to
sequence these words is quite complicated. Furthermore, the user
is restricted to the wired-in microinstructions.

"The author refers to the reviewer's expressed opinion
that a programmodifiable microprogram system would probably not
justify itself in practice, but suggests that in the area of non-
numerical information processing of the 'production' type this may
not be so. The case is not, however, argued in detail, and the
author soon passes to a description of a proposed method of de-
signing a program—modifiable control unit.

In the conventional microprogramming system a read-only
memory is used to hold the program of micro-orders. In the proposed
scheme the read-only memory contains the micro-orders arranged in a
random order, each order used in the microprogram appearing once
only. There is a secondary memory of normal erasable type containing
words into which information about the microprogram is packed. These
words are processed in order by the sequencing circuits, and each
causes a sequence of micro-orders to be extracted from the read-only
memory and executed.

The scheme is ingenious but complicated. The author
realizes this, and he also draws attention to the other major dis-
advantage, namely, that the microprogrammer is restricted in his
choice of micro-orriers to those which are wired into the read-only
memory. This might seriously prejudice the main object of the
scheme, which is to get closer to ultimate efficiency by being able
to choose an order code optimum for the application in hand.”

M. V. Wilkes, Cambridge, England,
Computing Reviews; 1963, #4166,
p. 129.

19

(31)
GREEN, J., '"Microprogramming, emulators and programming languages',
Communications of the ACM, Vol. 9, No. 3; March 1966, pp. 230-232.

"This paper is concerned with the no-man's land between,
or common to, machines and languages; the land of soft hardware and
hard software. We know the problem of finding a machine in terms of
which programming languages can be defined; what of the problem of
finding a language in terms of which machines can be defined? There
is a need for a metalanguage in which no distinction need be made
between hardware and software, between machine and language, so that
the gap which exists in practice can be bridged in discussion.

Some confusion to the reader is likely on first reading
owing to the fact that the word 'automaton' is incorrectly printed
as 'automation' in a number of places."

F. G. Duncan, London, England,
Computing Reviews; September-
October 1966, #10,450, p. 409.

(32)
GREENBERG, M. and WEGBREIT, E., '"y-212: A microprogrammed computer',
Unpublished class notes, Eng. 212, Harvard University; May 1968.

Machine: py-212

This set of class notes for "Engineering 212" presents the
detailed design of a microprogrammed computer, the ;;-212, which was
created to highlight microprogramming aspects. Descriptions of the
central processing unit, basic instruction set, and control unit
(read-only) are listed. Three appendices are also provided:

1. Hardware drawings
2. Various microinstructions
3. Operation codes

The read-only memory has a 170 nanoseconds cycle time divided
into three phases. Period one executes the current microinstruction
and loads the control memory address register with the next micro-
instruction. Period two starts the reading of the new instruction
from the address register, and period three places the instruction
into the memory buffer register.

The authors claim the novelty of their read-only memory
control design, but do not elaborate.

20

(33)

HAGIWARA, H.; AMO, K.; MATSUSHITA, S. and YAMAUCHI, H., "The KT
Pilot computer - A micro-programmed computer with a phototransistor
fixed memory", Proceedings IFIP Congress 62; pp. 684-687.

Machine: KT Pilot

This paper introduces a computer designed jointly by
Kyoto University and Tokyo Shibaura Electric Company Ltd. The
system design, circuit elements and physical construction of the
computer are briefly described. The order code of the machine is
under the control of the programmer.

The fixed memory is unique in that it has been constructed
with phototransistors. A punched card template is placed over an
array of phototransistors and, by means of projected light, a path
in a matrix is either opened or remains closed.

The output of the read-only memory is used to open and
close gates (1 gate per bit organization). There are 256 eighty
bit words in the ROM.

(34)

HARRAND, Y., "Evolution of microprogramming concepts', Proceedings

3rd AFCALTI Congress of Computing and Information Processing; Toulouse,
1963, pp. 187-190.

"The author defines a microprogrammed machine as one that
has only those orders wired in that can be done in one machine cycle.
Actual executed instructions are built up out of these basic operationms.
Generally, each 'macro-instruction' is executed as some sort of a hard-
ware subroutine. The paper discusses the advantages of such machines,
especially in the case where the user is allowed to design his own
hardware subroutine. Of course, this technique is used in the hard-
ware emulators of c¢tner machines used in IBM's System/360 machines."

J. E. Denes, Upton, New York,

Computing Reviews; March-April 1966,
#9474, p. 189.

21

(35)

HAWRYSZKIEWYCZ, I. T., "Microprogrammed control in problem—oriented
languages', IEEE Transactions on Electronic Computers, Vol. EC-16,
No. &; October 1967, pp. 652-658.

Machine: CIRRUS

The application of microprogramming to problem—oriented
languages is described in terms of a simulated analog system on a
digital computer. In the system described a problem defined by
differential equations is drawn up in the form of an analog diagram.
The system allows the machine assembly code to be freely mixed with
the analog-oriented source language input in coding the supervisory
and interrupt facilities.

(36)
HECKELMAN, R. W., "Self-checking redundant microprograms', IFEE
Computer Group Repository R67-31; August 1966.

"Quick, comprehensive error detection is a requisite of
high reliability."

Hardware solutions are either too expensive or incomplete,
while software solutions are both incomplete and result in severely
slowed performance.

"If redundant software instructions are implemented as
microinstructions, then the speed of checking is greatly increased."

"In this report, redundant algorithms and corresponding
microprograms are presented and evaluated for detection of both
transient and steady errors in parallel arithmetic and logical
operations. The results are quite promising with respect to
potential speed of performance, percentage of added hardware, and
comprehensiveness of error detection."

22

37

HELLERMAN, L. and HOERNES, G. E., "Control storage use in implementing
an associative processor for a time-shared processor'", IEEE Transactions
on Computers, Vol. C-17, No. 12; December 1968, pp. 1144-1151.

Machine: 1IBM 360/40 (CP-40)

This paper discusses the use of the Associative Memory (AM)
used to implement the Cambridge System, a modified 360/40. The Cam-
bridge System allows up to 15 users to time share what appears to
each user to be a standard, complete, but slow 360/40. The AM is
used for automatic address translation, supporting a paging concept;
it is controlled via microprogram.

The AM is functionally described, as are the controlling
microprograms.

(38)

HILL, R. H., "Stored logic programming and applications', Datamation,
Vol. 10, No. 2; February 1964, pp. 36-39.

The author evaluates "...the contributions of stored logic

to computer design...from the viewpoint of programming and applications."

He concludes that the techniques have not proved themselves,
that "...the developers...found they had put together general purpose
devices directly competitive with more conventionally organized com-
puters in any given applications area.”

", ..Stored logic loses its significance when a stored logic
computer is called upon to compile and execute FORTRAN, COBOL, NELIAC,
JOVIAL, etc."

", ..the future of stored logic as a design technique is
somewhat cloudy."

23

(39)
IBM, "Data processing: Microprogramming PI course', IBM #221-0083.

Machine: 1IBM System 360

This course is designed to introduce the student to an
in-depth study of microprogramming for the IBM System 360 series.
It describes the engineering teckniques employed in microprogramming,
but the primary concern is for the programmer's point of view.

Section I includes an introduction to read-only storage
and control points. Section II contains ideas on the microprogram
and control file memories. Section III is concerned with Controlled
Automated System (CAS) logic diagrams.

(40)
INGALLS, R. A., "Logical design of a microprogrammed special-purpose
computer', United States Naval Postgraduate School; December 1966.

Machine: UNIVAC 1830 Avionics Computer

This thesis is a comparison between a conventional computer,
the UNIVAC 1830, and an experimental computer similar to the UNIVAC
1830 which uses a microprogrammed control unit.

The first section contains a general outline on the difference
between conventional and microprogram control, followed by the test
itself. The test results clearly show that the microprogrammed computer
is faster; for example, the add operation under microprogramming takes
275 microseconds, while conventional means would take 1016 microseconds.
This test, operated under hypothetical conditions, appears to contribute
to the theory that microprogramming can contribute to a more efficient
computer.

24

(41)
IVERSON, K. E., "Microprogramming', A Programming Language, Chapter 2,
John Wiley and Sons, Inc.; New York, 1962, pp. 71-104.

Machine: IBM 7090

This chapter from Iverson's book defines microprogramming
to include paper descriptions of a computer's machine language which
could be used to bridge the gap between the computer design and the
logical circuit designer. Iverson proceeds to describe the 7090
machine language in terms of more elementary operations.

(42)

KAMPE, T. W., '"The design of a general-purpose microprogram-controlled
computer with elementary structure", IRE Transactions on Electronic
Computers, Vol. EC-9; June 1960, pp. 208-213.

Machine: SD-2

This paper discusses the logical design of a binary,
parallel, real-time computer. A description of the type of machine
wanted is followed by the design decisions generated by the descrip-
tion. The contents of the micro-controlled logic generation are
discussed, with reasons given for their incorporation into the
scheme.

25

(43)
KLEIN, S. and SCHWARTZ, S., '"Model 4200-8200 read-only memory control
logic'", Honeywell Computer Journal; Winter-Spring 1968, pp. 25-33.

"This paper summarizes the principal characteristics and
the advantages of the read-only memory (ROM) as a control element
in the 4200/8200 processors. The functions of both the address-
generator ROM and the arithmetic unit ROM in the Model 8200 are
described. Bit steering is discussed as a decoding scheme used
to reduce the size of the ROM in the Model 4200." (Author)

Described with facility poor even for a house journal,
bit steering is an encoding scheme intended to provide "a method
by which one could change the way ROM bits were interpreted without
having to rewire the machine." The full flexibility achieved was
not what might have been desired. Consider the number of y-operations
which may be explicitly and concurrently mentioned 'by (encoded)
name'" by b bits. On one hand we may associate one bit for each of
b y~-operations, allowing concurrent mention of b distinct j-operations.
Alternatively, one might associate apy-operation with each of the 2b
states uniquely expressable by the b bits, allowing concurrent mention
of only one of the 2b possible y -operations.

"Bit steering' chooses a middle ground. Given a field of
n + b bits, let the n bits select ("steer to'") one of 21 sets of
association maps for the b bits. Each association map pairs each
of the b bits to oney -operation. One has the potential of addressing
up to 20 x b, -operations, b at a time. In<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>